Authors Carien E. Beneke, Alvaro M. Viljoen and Josias H. Hamman
Drug dosage forms contain many components in addition to the active pharmaceutical ingredient(s) to assist in the manufacturing process as well as to optimize drug delivery, Due to advances in drug delivery technology, excipients are currently included in novel dosage forms to fulfil specific functions and in some cases they directly or indirectly influence the extent and/or rate of drug release and absorption. Since plant polysaccharides comply with many requirements expected of pharmaceutical excipients such as non-toxicity, stability, availability and renewability they are extensively investigated for use in the development of solid oral dosage forms, polysaccharides with varying physicochemical properties can be extracted from plants at relatively low cost and can be chemically modified to suit specific needs. As an example, many polysaccharide-rich plant materials are successfully used as matrix formers in modified release dosage forms. Some natural polysaccharides have even shown environmental-responsive gelation characteristics with the potential to control drug release according to specific therapeutic needs, Polymers have been successfully employed in the formulation of solid, liquid and semi-solid dosage forms and are specifically useful in the design of modified release drug delivery systems, excipients were included in drug formulations as inert vehicles that provided the necessary weight, consistency and volume for the correct administration of the active ingredient, but in modern pharmaceutical dosage forms they often fulfil multi-functional roles such as improvement of the stability, release and bioavailability of the active ingredient, enhancement of patient acceptability and performance of technological functions that ensure ease of manufacture, specific application of plant-derived polymers in pharmaceutical formulations include their use in the manufacture of solid monolithic matrix systems, implants, films, beads, microparticles, nanoparticles, inhalable and injectable systems as well as viscous liquid formulations, within these dosage forms, polymeric materials have fulfilled different roles such as binders, matrix formers or drug release modifiers, film coating formers, thickeners or viscosity enhancers, stabilizers, disintegrants, solubilizes, emulsifiers, suspending agents, gelling agents and bioadhesives, Polymers are often utilized in the design of novel drug delivery systems such as those that target delivery of the drug to a specific region in the gastrointestinal tract or in response to external stimuli to release the drug. This can be done via different mechanisms including coating of tablets with polymers having pH dependent solubilities or incorporating non-digestible polymers that are degraded by bacterial enzymes in the colon. Non-starch, linear polysaccharides are resistant to the digestive action of the gastrointestinal enzymes and retain their integrity in the upper gastrointestinal tract. Matrices manufactured from these polysaccharides therefore remain intact in the stomach and the small intestine, but once they reach the colon they are degraded by the bacterial polysaccharides. This property makes these polysaccharides exceptionally suitable for the formulation of colon-targeted drug delivery systems, use of plant-derived polymers and their semi-synthetic derivatives as excipients in the formulation of drug delivery systems. Specific reference is made to the use of natural polymers in the design of novel dosage forms such as modified release matrix type tablets and other new drug delivery systems