Authors Subrata Das, Arunava Das,T, Sathyamangalam, Erode District, Tamil Nadu, India; &S. Rama Nivashini
Aloe barbadensis miller is one such product exhibiting anti-microbial activity. Recent advances in the field of dentistry have promoted the use of Aloe barbadensis miller for treatment of various oral diseases and periodontal conditions. There are different polysaccharides in Aloe barbadensis miller, such as glucomannan with different molecular weight, acetylated glucomannan, galactogalacturan, glucoga-lactomannan with different compositions as well as acetylated mannan or acemannan. Acemannan is a long chain polymer consisting of randomly acetylated linear D-mannopyranosyl units has immunomodulation, antibacterial, antifungal, and antitumor properties Eco-friendly anti-microbial finishing on cotton woven fabric using Aloe barbadensis miller extract at various concentrations in the presence of eco-friendly cross-linking agent glyoxal by pad dry cure technique. Both the qualitative (AATCC 147, 1998) and quantitative (AATCC 100, 1998) evaluation was done to assess the degree of antibacterial activity of the Aloe barbadensis miller treated cotton fabric. The current trend deals with the potential of biotechnology in the textile industry. Now, there is a good deal of demand for the fabrics having functional/specialty finishes in general but antimicrobial finishes in particular to protect human being against microbes. The application of antimicrobial textile finishes includes a wide range of textile products for medical, technical, industrial, home furnishing and apparel sectors. The present investigation aims at developing an eco-friendly natural herbal finish from Aloe barbadensis miller extract for textile applications. The fabric exhibited high antimicrobial property at 5 g/l concentration. This is due to the fact that anti-microbial agent gets attached to the substrate through bond formation on the surface. The attached antimicrobial agent disrupts the cell membrane of the microbes through the physical and ionic phenomenon. The finishing agent inhibits growth of micro-organisms by using an electrochemical mode of action to penetrate and disrupt their cell walls. When the cell walls are penetrated, leakage of metabolites occurs and other cell functions are disabled, thereby preventing the organism from functioning or reproducing. Exhibition of less zone of inhibition for gram positive bacteria (Bacillusthuringiensis) is the reflection that Aloe barbadensis miller does show less antimicrobial activity against this bacterium.