|
|
|
|
|
|

Blog: Aloe Vera Feminine Hygiene Care

Aloe vera can be used in various forms like hydrating gel, creams, masks. It can be applied directly to the skin or hair, or mixed with other ingredients to make a face mask, hair mask, or other beauty products.

Blog: Aloe vera delivery system for dietary supplements

Cosmeceuticals combine the best of both worlds: wellness and beauty. At this intersection, marketers are seeking to help define the term cosmeceutical; this term tends to imply a product that is neither a drug, nor a cosmetic, but one that has a desired impact inside the skin.

Blog: Aloe vera Oral Care

The effects of good Oral hygiene run far deeper than the mouth, teeth, and gums are coated with plaque and have been currently linked to an increased risk for various cardiovascular diseases. 

FAQ

What is the Aloe Vera plant?

Aloe barbadensis miller is a cactus-like plant that grows in hot, dry climates. It is cultivated in subtropical regions around the world, it has multiple benefits such as; anti-ageing, fights acne, reduces plaque, It’s hydrating, It’s moisturising, boosts digestion, It soothes sazor surn, lowers blood sugar and more

FAQ

Aloe vera enhance wellbeing and immune system?

Enhances macrophage effectiveness in modulating the entire immune system, stimulate, produce, and release antibodies. Increases the number of antibodies forming T-cells in the spleen. Helps to effectively balance and restore proper immune system function.

FAQ

How does aloe vera aids in moisturization product development?

Aloe vera extract enhances inter-cellular tight junction in skin cells thereby, providing enhanced moisturization of skin and reducing chances of skin infections.

FAQ

Aloe Vera’s Topical Uses.

Aloe vera may be most well-known for its moisturizing properties. It can be found in plenty of skin and hair products, but it can also be used straight from the plant. Aloe extract is promoted complete regeneration of the skin. Research suggests that polysaccharides in the gel have anti-itching and anti-inflammatory that help with wound healing, topical use encourages regeneration of tissue.

Textile bio processing using Aloe gel.

Authors Amanuel L. and Teferi X.

It is important to note that biotechnology is not just concerned with biology, but it is a truly interdisciplinary subject involving the integration of natural and engineering sciences. Biotechnology is like an enormous “factory” which not only provides other industries with innovative ideas, but also supplies the appropriate knowledge. Now familiar with the application of modern biotechnology in medicine and agriculture: so-called red and green biotechnology. There is less general awareness of the white variety: the use of biotechnology for industrial applications. These are all examples of biotechnology in action, a sector that is constantly growing and expanding into other industrial sectors, a true driving force of interdisciplinary applications. The current trend deals with the potential of aloe Vera gel as biotechnology in the textile industry. The aloe plant, being a cactus plant, is about 95% water, with an average pH of 4.5. The remaining solid material contains over 75 different ingredients including vitamins, minerals, enzymes, sugars, anthraquinones or phenolic compounds, lignin, saponins, sterols, amino acids, and salicylic acid. Several of enzyme biochemical catalysts, such as amylase and lipase, can aid digestion by breaking down fats and sugars. One important enzyme, a carboxy-peptidase, inactivates bradykinins and produces an anti-inflammatory effect. During the inflammatory process, bradykinin produces pain associated with vasodilation and, therefore, its hydrolysis reduces these two components and produces an analgesic effect. As mineral composition Aloe Vera contains Calcium, Manganese, Sodium, Copper, Magnesium, Potassium, Zinc, Chromium, and Iron. These minerals are essential for human health care; calcium is essential for proper bone and teeth density, Manganese a component of enzymes necessary for the activation of other enzymes, Sodium ensures that the body fluids do not become too acidic or too alkaline, Copper enables iron to work as oxygen carriers in the red blood cells, Magnesium is used by nerves and muscle membranes to help conduct electrical impulses, Potassium regulates the acidic or alkaline levels of body fluid, Zinc contributes to the metabolism of proteins, carbohydrates and fats, Chromium is necessary for the proper function of insulin, which in turn controls the sugar levels in the blood and Iron controls the transportation of oxygen around the body via the red blood cells. Desizing of cotton with aloe gel, Aloe Vera has thick succulent water-soluble gel, which contains more amount of polysaccharide especially, Polysaccharides: glucomannans/ polymannose this sugar is thick in nature and its thickness is used as thickener in reactive and pigment printing. Effect of sodium ion present in aloe gel on low salt reactive dyed cotton fabrics, since aloe, gel contains many compounds inside like enzymes, amino acids and elements like magnesium, calcium sodium and other essential compounds and elements. From these elements, we tried to use the sodium ion for reactive dyeing without addition of sodium chloride. The fabric pre-treated cotton fabrics dyed with null salt and we got different depth of shade depending on concentration aloe gel the fabrics pre-treated. in our test the fabrics treated with 100% aloe gel have good and higher shade depth, 80% aloe gel treated fabrics has medium and the 60% aloe gel treated fabrics have lower shade depth. Because when the concentration aloe gel is increasing the amount of sodium ion inside the aloe gel is directly increases and the dye bath exhaustion so the dye uptake of the fabrics is higher as shown above the results. When we come to the fabric, properties as if wash fastness, tearing strength, drapiblty is not damaged even the treatment give good texture, smoothness, and medical applications like bandage to wound. Antimicrobial activity of aloe gel treated sample (agar diffusion test), the result of Agar Diffusion Test for antimicrobial effectiveness against standard test cultures viz., E. coli (gram negative). The zone of bacterial inhibition is indicated by a halo around the specimen. It is apparent that the activity of aloe gel treated samples is high against E. coli. It is attributed that bacterial inhibition is due to the slow release of active substances from the fabric surface. The anthraquinone present in the aloe absorb the fatty acids, which make the fabric free from microbe profilation. Effect of enzymes present in aloe gel in cotton desizing Some of the most important enzymes in Aloe Vera are Peroxidase, Aliiase, Catalase, Lipase, Cellulase, Carboxypeptidase, Amylase and Alkaline Phosphatase. These enzymes have active centers, which are the points where substrate molecule can join. Just as a particular key fit into a lock, a particular substrate molecule fits into the active site of the enzyme. The substrate forms a complex with the enzyme. Later the substrate molecule is converted into the product and the enzyme itself is regenerated. The process continues until the enzyme is poisoned by a chemical bogie or inactivated by extremes of temperature, pH or by other negative conditions in the processing environment. Protein concentration present in extracted aloe gel, The test result has clearly indicated that the absorbency wavelength of aloe gel at 200 nm 2.957 and 290 nm 2.674 but the wavelength is constant in between 205 nm and 280 nm. It can be strongly believed that most of the protein has strong and peak absorbency at the above-mentioned nm. Hence, the protein present in the extracted gel is very pure without any variation in the frequency curve, irrespective of color and percentage shade, dye uptake of reactive dyed by cotton fabric highly depends on the concentration of aloe gel in padding solution of pre-treatment for dyeing. The extent of improvement in dye uptake depends on concentration of sodium ion as well as duration of treatment. When the fabric is treated with higher concentration of aloe gel, the dye shade depth can be improved. Higher the concentration of sodium ion and longer the duration of the treatment better will be dyeing uptake. The aloe gel treated fabric was exhibited high desizing efficiency. This is due to key -Lock mechanism of enzymes presents in the aloe gel. When we compare the desizing efficiency of synthetic enzyme and aloe gel enzyme (natural enzyme amylase) the weight loss is greater that means the weight loss in synthetic enzyme desizing is 7.9% and in aloe gel case it is 11.02% so it has good desizing efficiency but aloe gel desizing have side effect of coloring salt. Remedies: it can be improved by usual scouring method. Because Aloe Vera has six antiseptic agents (Anthraquinone, sulphates, lupeol, salicylic acid, cinnamic acid, urea nitrogen and phenol) which act as a team to provide antimicrobial activity thus eliminating many internal and external infections. From our lab result aloe gel treated fabric has very high inhibition against E. coli microorganism. The qualitative amount of protein presenting in aloe gel is from 2.5-3 gram in one litter of aloe gel and this have good promising for production of glycoprotein which is responsible for white blood cell production. And also, the protein present in the aloe gel is extremely pure and free from fertilizer. The test results of aloe gel printed fabrics have strongly showed that aloe gel can be used as natural thickener in place of synthetic thickener. When we use aloe gel the color depth is much higher than synthetic printed fabric. This is because of the nature of aloe gel is colorless when it is pure. But the synthetic thickener is s white in color influences the color depth. In addition to our work further research work should be suggested to find out the miracle nature and application of aloe Vera

Aloe Vera Formulations

Explore our comprehensive range of aloe vera-infused formulations spanning Animal Care, Cosmetics, Household Care, and Personal Care for a naturally enriched lifestyle.

View Formulations